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Cationic gold(I) complexes having Buchwald-type biaryl-
phosphines effectively catalyzed twofold hydroarylation of 2,6-
dialkynylbiphenyls to construct pyrene skeletons.

Synthesis of polycyclic aromatic hydrocarbons (PAHs)1 has
been the subject of intensive research because PAHs possess
characteristic light-emitting and semiconducting properties.2

Among them, pyrene derivatives are an important class of
compounds that have been used as materials for organic light-
emitting diodes3 and fluorescent probes and sensors.4 Several
established methods are available for the synthesis of 1,3,6,8-
substituted5 and 2,7-substituted pyrenes6 from pyrene. In
contrast, substitution reactions of pyrene at the 4, 5, 9, and 10
positions have been scarcely developed.7 Pyrene derivatives
possessing substituents at these positions are often prepared via
indirect routes involving partial reduction8 and the Diels­Alder
reaction9 of pyrene. Fürstner reported that hydroarylation
reaction10 of 2-alkynylbiphenyls gives phenanthrenes and/or
9-alkylidenefluorenes depending on the catalyst employed.11 We
anticipated that pyrene skeletons could be directly constructed
by twofold hydroarylation of dialkynylbiphenyls.12,13 In this
paper, we report that 4,10-disubstituted pyrenes are synthesized
by gold(I)-catalyzed twofold hydroarylation of 2,6-dialkynylbi-
phenyls.

2,6-Dialkynylbiphenyls 1 requisite for twofold hydroaryla-
tion were prepared as shown in Scheme 1. Palladium-catalyzed
cross-coupling of 2-iodo-1,3-dimethoxybenzene (2) with phen-
ylboronic acid gave 2,6-dimethoxybiphenyl (3). Demethylation
of 3 with BBr3 afforded biphenyl-2,6-diol (4).14 The two
hydroxy groups of 4 were converted to the corresponding
triflates, and subsequent palladium-catalyzed cross-coupling
with trimethylsilylacetylene provided 2,6-bis[(trimethylsilyl)-
ethynyl]biphenyl (1a). The trimethylsilyl groups were removed
under basic conditions, and the resulting 2,6-diethynylbiphenyl
(1b) underwent palladium-catalyzed cross-coupling with aryl
halides to furnish 2,6-bis(arylethynyl)biphenyls 1c­1e in up to
90% yields.15

2,6-Bis[(4-methoxyphenyl)ethynyl]biphenyl (1c) thus ob-
tained was treated with PtCl2 in p-xylene at 140 °C.11 However,
no formation of a pyrene derivative was observed, which led
us to examine a hydroarylation reaction using gold(I) com-
plexes having Buchwald-type biarylphosphine ligands (Table 1).
When diyne 1c was heated in p-xylene in the presence of
(SPhos)AuNTf2 (20mol%) at 150 °C for 24 h, hydroarylation
successfully occurred on both sides to afford 4,10-bis(4-meth-
oxyphenyl)pyrene (6c) in 83% yield (Entry 1). (XPhos)AuNTf2
worked equally well (Entry 2), and (t-butylXPhos)AuNTf2 gave
the best result giving 6c in 88% yield (Entry 3).16,17 On the other
hand, neutral chlorogold(I) complexes bearing the same biaryl-
phosphine ligands failed to promote the hydroarylation. Both the

catalyst loading and the reaction temperature could be reduced
by the use of 1,2-dichloroethane (DCE) as the solvent; when the
reaction was carried out in DCE at 70 °C with the use of 5mol%
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Scheme 1. Conditions: (a) 1.1 equiv PhB(OH)2, 1mol%
[Pd2(dba)3]¢CHCl3, 2.4mol% [HP(t-Bu)3]BF4, 3.3 equiv KF,
THF, reflux. (b) 2 equiv BBr3, CH2Cl2, ¹78 °C to rt. (c) 4 equiv
Tf2O, 3 equiv pyridine, CH2Cl2, 0 °C to rt. (d) 3 equiv
Me3SiC≡CH, 20mol% [PdCl2(PPh3)2], 40mol% CuI, 2 equiv
Bu4NI, 13 equiv Et3N, DMF, 85 °C. (e) 2.3 equiv K2CO3,
MeOH, rt. (f) 2 equiv ArI, 6mol% [PdCl2(PPh3)2], 10mol%
CuI, Et3N, rt.

Table 1. Hydroarylation of diyne 1c
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cat.
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Entry
Gold(I) catalyst

Conditions Yielda/%
/mol% Ligand

1 20 SPhos p-xylene, 150 °C 83
2 20 XPhos p-xylene, 150 °C 83
3 20 t-butylXPhos p-xylene, 150 °C 88
4 5 t-butylXPhos DCE, 70 °C 73
5 5 t-butylXPhos DCE, 60 °C 48

aIsolated yield.
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of (t-butylXPhos)AuNTf2, pyrene 6c was produced in 73% yield
(Entry 4). However, incomplete conversion was observed when
the reaction was carried out at 60 °C for 24 h (Entry 5), and no
reaction occurred at room temperature.

The twofold hydroarylation was examined with various
2,6-dialkynylbiphenyls 1 in DCE (80 °C) and/or in p-xylene
(150 °C) (Table 2). A distinct electronic effect was observed
with the hydroarylation of 2,6-bis(arylethynyl)biphenyls. Elec-
tron-rich aryl substituents appended to a 2,6-bis[(4-methoxy-
phenyl)ethynyl]phenyl group accelerated the hydroarylation
reaction; the reaction of diynes 1f and 1g having additional
alkyl substituents on the biphenyl backbone gave high yields of
the corresponding pyrenes 6f and 6g, respectively (Entries 1 and
2). The reaction of phenyl-substituted derivative 1d was slower
than that of the 4-methoxyphenyl-substituted derivative 1c, and
pyrene 6d was isolated in 47% yield with the use of 20mol% of
the catalyst in DCE (Entry 3).18 In the case of diyne 1e equipped
with 4-chlorophenyl groups, the reaction was even more
sluggish, and when carried out in p-xylene at 150 °C, produced
pyrene 6e in moderate yield (Entry 4). No reaction occurred
with a diyne having nitro groups on the para-positions of the
phenyl rings. Thus, the reactivity of 2,6-bis(arylethynyl)biphen-
yls was highly dependent on the electronic character of the aryl
groups. The hydroarylation reaction proceeded more facilely
with more electron-donating aryl groups. In addition to those
with arylethynyl substituents, 2,6-di(prop-1-ynyl)biphenyl (1h)
also participated in the hydroarylation reaction to give 4,10-

dimethylpyrene (6h) in good yield (Entry 5). On the other hand,
the reaction of 1b having terminal ethynyl groups suffered the
formation of a by-product derived from the competing 5-exo
cyclization to afford pyrene (6b) in low yield (Entry 6).
Trimethylsilyl-substituted substrate 1a also afforded 6b through
desilylation that occurred during the course of the reaction
(Entry 7).19

In summary, we have established a new entry to 4,10-
substituted pyrenes via gold(I)-catalyzed twofold hydroarylation
of 2,6-dialkynylbiphenyls. Further studies to explore the
reactivities peculiar to dialkynylbiphenyls are underway and
the results will be reported in due course.
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Table 2. Hydroarylation of 1 catalyzed by (t-butylXPhos)-
AuNTf2a

RR
R R24 h

1 6

cat.
(t -butylXPhos)AuNTf2

Entry 1 R 6 Yield /%b

A B
1 1f

RR

Me Me

(R = 4-MeOC6H4)

6f 89 95

2 1g

RR

t-Bu

(R = 4-MeOC6H4)

6g 92 96

3 1d Ph 6d 47c

4 1e 4-ClC6H4 6e 1d 52
5 1h Me 6h 70 86
6 1b H 6b 30 18
7 1a SiMe3 6b 16 42

aMethod A: 5mol% catalyst in DCE at 80 °C. Method B:
20mol% catalyst in p-xylene at 150 °C. bIsolated yield.
c20mol% of catalyst was used. dA mixture with monohy-
droarylated phenanthrene (22%).
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